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Abstract—A grain-bridging model of crack-resistance or toughness (R-curve, or T-curve) properties of
nontransforming ceramics is developed. A key new feature of the fracture mechanics treatment is the
inclusion of internal residual (thermal expansion mismatch) stresses in the constitutive stress-separation
relation for pullout of interlocking grains from an embedding matrix. These internal stresses play a
controlling role in the toughness properties by determining the scale of frictional tractions at the sliding
grain—matrix interface. By providing a physical account of the underlying micromechanics of the bridging
process the analysis allows for predetermination of the material factors in the constitutive relation, thereby
reducing parametric adjustments necessary in fitting the theoretical toughness curve to experimental data.
The applicability of the model is illustrated in a case study on indentation-strength data for a “reference”
polycrystalline alumina with particularly strong T-curve characteristics. From theoretical fits to these data
the constitutive relation, and thence the entire T-curve, can be deconvoluted. This ‘“parametric
calibration”, apart from demonstrating the plausibility of the model, allows for quantitative predictions
as to how the toughness and strength characteristics of ceramics depend on such microstructural variables
as grain size and shape, grain boundary energy, level of internal stress and sliding friction coefficient. An
indication of this predictive capacity is provided by a preliminary calculation of the grain-size dependence
of strength, using some existing data for other aluminas as a basis for comparison.

Résumé—Nous développons un modéle, par liaison des grains, des propriétés de résistance aux fissures
ou de dureté (courbe R ou courbe T) dans des céramiques stables. Une caractéristique nouvelle essentielle
du traitement de la mécanique de la rupture consiste a inclure les contraintes résiduelles internes (désaccord
de dilatation thermique) dans la relation de base contrainte-rupture pour l'arrachement de grains
imbriqués hors de la matrice qui les entoure. Ces contraintes internes contrdlent les propriétés de dureté
en déterminant I’échelle des tensions de frottement aux interfaces matrice/grain qui glissent. Parce qu’elle
fournit une description physique des micromécanismes sous-jacents du processus de liaison, cette analyse
permet de déterminer a ’avance les facteurs de matériau dans la relation de base, et donc de réduire les
ajustements de paramétres nécessaires pour faire coincider les courbes théoriques de dureté et les résultats
expérimentaux. L’applicabilité du modéle est illustrée dans une étude des valeurs expérimentales de la
résistance a I'indentation d’une alumine polycristalline “de référence” dont les caractéristiques de la courbe
T sont particuliérement élevées. Quand on ajuste la théorie d ces résultats, on peut déconvoluer la relation
de base et donc la courbe T entiére. Cet “étalonnage paramétrique”, outre qu’il démontre la vraisemblance
de notre modeéle, permet de prévoir de fagon quantitative comment les caractéristiques de résistance et
de dureté des céramiques dépendent de variables microstructurales telles que la taille et la forme des grains,
I’énergie intergranulaire, le niveau de la contrainte interne et le coefficient de frottement en glissement.
Un calcul préliminaire de l'effect de la taille de grains sur la résistance, utilisant comme base de
comparaison quelques résultats disponibles pour des alumines différentes, fournit une indication de cette
aptitude a prévoir.

Zusammenfassung—Ein Korner iiberbriickendes Modell des RiBwiderstandes oder der Zahigkeit (R-
Kurve oder T-Kurve) wird fiir sich nicht umwandelnde Keramiken entwickelt. Als wichtiger neuer Ansatz
in der bruchmechanischen Behandlung werden innere Restspannungen (hervorgerufen durch thermische
Fehlpassungen) in die grundlegende Beziehung zwischen Spannung und Weg fir das Herausziehen
miteinander verhakter Korner aus der umgebenden Matrix aufgenommen. Diese inneren Spannungen
kontrollieren die Zahigkeitseigenschaften, indem sie den Rahmen der Reibung an der gleitenden
Korn-Matrix-Grenzfliche bestimmen. Mit der physikalischen Beschreibung der Mikromechanik des
Uberbriickungsprozesses kénnen die Materialfaktoren in der Grundbeziehung vorher bestimmt werden,
wobei die Anpassung der theoretischen Zahigkeitskurve an die experimentellen Ergebnisse mit Parameter
vereinfacht wird. Die Anwendbarkeit des Modelles wird mit einer Untersuchung der Festigkeit bei
Stempeleindruck von einem polykristallinen ““Referenz”’-Aluminiumoxid mit besonders starker T-Kurven-
Charakteristik gezeigt. Aus der theoretischen Anpassung an diese Daten kann die Grundbeziehung und
damit die gesamte T-Kurve aus einer Dekonvolution erhalten werden. Diese “parametrische Eichung”
ermoglicht, neben der Demonstration der Plausibilitit des Modelles, die quantitativen Aussagen, wie
Zihigkeits- und Festigkeits-eigenschaften von Keramiken von mikrostrukturellen Variablen wie Korn-
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groBe und-form, Korngrenzenergie, Niveau der inneren Spannungen und Koeffizient der Gleitreibung
abhingen. Ein Hinweis auf diese Fahigkeit der Voraussage wird geliefert, indem die Abhéngigkeit der
Festigkeit von der KorngrdBe berechnet wird, wobei einige verfiigbare Daten fiir andere Aluminiumoxide
als Grundlage fiir einen Vergleich herangezogen werden.

1. INTRODUCTION

Much recent attention has been paid to the phenom-
enon of a systematically increasing fracture resistance
with crack extension in ceramics (R-curve, or T-
curve). In nontransforming ceramicst the magnitude
of this increase can be respectable, i.e. in excess of a
factor of three, depending on the microstructure
[1-12]. The range of extension over which the increase
can occur is perhaps even more impressive, amount-
ing in some instances to some hundreds of grain
dimensions. The R-curve has a stabilising influence
on crack growth, strikingly manifested in strength
properties as a tendency to flaw insensitivity [13]:
hence “flaw tolerance”, a concept with especially
strong appeal to those concerned with structural
design.

This flaw tolerance is especially well demonstrated
in indentation-strength tests [3, 4, 9], where Vickers
indentations are used to introduce controlled starter
flaws into the surfaces of strength specimens. At
decreasing indentation load the strength deviates
away from the (logarithmic —1/3) dependence of
strength on indentation load predicted for materials
with single-valued toughness, and tends instead to-
ward a well-defined plateau. Such plateaus have been
reported in a wide range of ceramic materials [3, 9],
indicating a certain generality in the R-curve
phenomenology. Moreover, these plateaus, where
they are pronounced, tend to the strengths for failures
from processing defects. Thus the indentation-
strength test provides R-curve information in the
crack-size domain most pertinent to designers, i.e. the
domain of natural flaws.

There is now a weight of direct evidence demon-
strating that the principal mechanism of rising crack
resistance behaviour in nontransforming ceramics is
grain-localised bridging at the crack interface behind
the advancing tip [4,5,7,10]. In particular, it is
observed that frictional tractions associated with the
pullout of interlocking grains can restrain the crack
opening for large distances (up to several mm in some
aluminas) behind the tip, thereby accounting for the
range of the R-curve. A traditional preoccupation of
ceramics fracture analysts with post-mortem fracto-
graphic observations had long precluded identifica-
tion of this mechanism: the very act of failure
destroys the bridges. It is only recently, as a result of
in situ crack extension observations made during the
stressing to failure, that the bridging mechanism has
become clear. Again, the mechanism appears to be

+As distinct from transforming ceramics (zirconia). The
significant increases in toughening in this latter class of
material are relatively well documented and understood.

common to a wide range of ceramics, especially
noncubic ceramics that fail by intergranular failure.

Theoretical descriptions of the bridging mechanism
are in their infancy. Mai and Lawn [13] presented a
model based on a distribution of closure tractions
across the crack walls. This distribution gives rise to
a “microstructural” stress intensity factor, which
augments the stress intensity factor associated with
the applied loading. Since this microstructural stress
intensity factor is negative it can be regarded as part
of the toughness/crack-size function, T'(c); thence the
R-curve (or, more strictly, T-curve). Key to the
theoretical development is the specification of a con-
stitutive stress-separation function defining the physi-
cal restraint exerted by individual bridges. In this
regard the approach of Mai and Lawn was phe-
nomenological; they recognised the need for an exten-
sive functional ““tail” to account for the large traction
zone behind the crack tip, but adopted an empirical
inverse relation to describe it. Their empirical func-
tion contains the necessary ingredients for a macro-
scopic description of the failure mechanics, allowing
for, among other things, a deconvolution of indenta-
tion-strength data to obtain the T-curve [9]. However,
while there is some precedent in the concrete litera-
ture for tail-dominated relations [14], the empirical
approach precludes a fundamental understanding of
the underlying material aspects of the phenomenon.
What elements of the microstructure control the
restraining tractions, and how might we adjust these
elements to optimise the R-curve characteristics?

In this paper we set out to answer such questions
by incorporating a stress-separation function based
on a specific physical mechanism of grain pullout for
noncubic materials. We consider the bridging grains
to be “locked” into the “matrix” on either side of the
crack interface by internal thermal expansion mis-
match stress. The resistance to pullout then derives
primarily from Coulomb friction at the sliding
matrix—grain interface. In this sense the mechanism is
analogous to that of fibre pullout in ceramic com-
posites. Indeed, we shall borrow from established
fracture mechanics descriptions for composites in our
own formulations. We are led to consider internal
stresses as an important factor for two reasons: first,
because of an apparent diminishing of the T-curve
behaviour with addition of intergranular phases in
alumina ceramics, the second phase presumably act-
ing to relax the stress buildup during the processing
[3, 4]: second, because the T-curve effect has been
observed in noncubic, but not cubic, ferroelectric
ceramics (viz. barium titanate below and above the
Curie temperature [3]). We emphasise at the outset
that these internal stresses enter the T-curve analysis
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only via their influence on the micromechanics of
bridging and not via any direct interaction with the
field of the advancing tip; we shall argue that the
latter possibility, considered as a potential source of
toughness variation in the earlier literature [15],
cannot account for the scale of the T-curve observed
in the materials to be investigated here.

Our goal is to formulate a theory for quantifying
the role of such microstructural parameters as size,
shape and spacing of bridging grains, grain boundary
energy and intergranular sliding friction coefficient,
on the strength properties of ceramics. To illustrate
the formalism we fit our toughness equations to some
data from previous indentation—strength tests on an
alumina with particularly strong T-curve characteris-
tics. With the results of this fit we then make some
preliminary predictions of the strength/grain-size de-
pendence. The ultimate hope is that such an approach
might be used to establish a theoretical base for a
processing strategy that allows for optimisation of
strength properties of ceramics for specific applica-
tions.

2. MICROMECHANICS OF FORCE-SEPARATION
FUNCTION FOR INTERLOCKING GRAINS
WITH INTERNAL-STRESS-MODIFIED
FRICTIONAL TRACTIONS

2.1. Geometrical factors and internal stresses

An important element of our model is the geomet-
rical configuration of interlocking grains at the crack
interface, and the role of local residual internal
stresses in determining subsequent frictional re-
straints as these grains are progressively disengaged
from the crack walls. Such stresses were first dis-
cussed in the context of grain bridging by Swain [16].
However, Swain confined his attention to estimates of
the spatial extent of the T-curve, without any consid-
eration of the shape or height of this curve.

Consider first thermal expansion mismatch stresses
normal to the separation plane along which the crack
is to propagate. These internal stresses arise from
crystallographic anisotropy of individual grains
within the material microstructure. They are conser -
vative, in that they may be relaxed and restored in any
elastic operation that displaces the opposing half-
spaces across the separation plane. They consist of
both tensile stresses, oy, and compressive stresses, o g

or = + B, EAaAT (1a)
or = —B_EAaAT (1b)

where E is Young’s modulus, A is the differential
thermal expansion coefficient, AT is the temperature
range through which the material deforms elastically,
and the B are coefficients < 1. Those grains subject to
compression will tend to remain in contact with both
sides of the interface in any such reversible separation
process, and thence constitute incipient “‘bridges”;
those remaining grains subject to tension may then be
considered as making up the constitutive “matrix”.
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Now define a characteristic grain size / and charac-
teristic bridge spacing d, as illustrated schematically
in Fig. 1(a) for a periodic rectangular lattice, such
that the area fraction of bridges is /2/2d? Then the
requirement for the tensile and compressive stresses
to balance over any potential separation plane is that

ox(1 — P22d%) = —a 5 (1%/2dP). @

For the ideal case of a unimodal, homogeneous grain
structure, where we expect equal probability of tensile
and compressive stress, i.e. f, = f_, equation (2)
requires that d = /. This corresponds to the limiting
configuration in which every alternate grain is (on
average) a bridge.

How might these internal stresses exert restraining
forces on prospective crack walls? When we deal with
fracture mechanics later we will need to distinguish
certain crack-size domains. For very small cracks in
the initial stages of development, ¢ < d, the walls will
feel the full influence of either the matrix tensile stress
oy (or, alternatively, the compressive stress o in the
relatively unlikely event of cracks generating from
within the bridges themselves). Thus in this domain
the discreteness of the microstructure is crucial. For
very large cracks, ¢ > d, the internal stresses must
average out to zero over the potential separation
plane. In the intermediate domain within the first few
bridge intersections the microstructural discreteness,
representable as alternate areas of positively and
negatively stressed grain facets, will rapidly wash out
(the crack area increasing with ~¢? for the penny-like
geometry). Accordingly, we make the approximation
that the net internal elastic stress across any crack
area beyond the first bridge is zero.

If this last approximation holds, then the origin of
the closure stresses needed to produce toughening

(@

-

Fig. 1. Schematic geometry of bridged interface, in rectangu-
lar “lattice” representation of microstructure: (a) projection
normal to crack plane; (b) profile view along crack plane.
Shaded areas denote bridging grains. Characteristic dimen-
sions /, grain size, d, bridge spacing. (The factor 2 in our
definition of the bridge separation is so that later in Fig. 4
we may conveniently delineate the region between no-
bridging and bridging simply by ¢ =d.)
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must lie in some subsidiary, nonconservative source.
Suppose the fracture to be intergranular, and con-
sider the internal stresses transverse to the separation
plane at the grain—matrix interfaces [Fig. 1(b)]. Some
of the grains (those destined to act as bridges) will be
in a state of residual compression. At this stage we
make no attempt to distinguish fine details of the
stress state, assuming a uniform distribution o at
the boundaries. We shall propose below that Cou-
lomb sliding friction at the compressive grain—-matrix
interface provides the dominant closure stress as the
surfaces are separated along the grain boundaries. It
is possible that not all compressively stressed grains
will be ideally oriented to provide effective interlock-
ing, in which case we may generally expect d > [, even
in ostensibly homogeneous microstructures. In this
model the internal stresses, although not the direct
cause of the closure, are (contrary to what one might
at first sight conclude from the preceding paragraph)
far from benign, since they determine the magnitude
of the frictional tractions.

Accordingly, we need to determine a constitutive
relation betwen closure stress, p, and (half) crack-wall
separation, u, for this dissipative friction component.
We shall adopt the convention, consistent with our
notion that frictional tractions will always act to
oppose crack opening, that positive p(u) denotes
closure. The function p(u) is derived for different
crack-size regions in the following subsections.

2.2. Frictional debonding at matrix—grain interface

Suppose the crack intersects a grain in residual
compression, Fig. 2(a). The intersected grain initially
exerts an opening force on the crack walls. As
separation behind the advancing crack tip proceeds,
this opening force diminishes and ultimately becomes
negative (closure), leaving the grain embedded in the

(a) Debonding
Y
LT
2u

1

- —

i

— L

I 1
bt

Fig. 2. Stages of friction grain detachment from matrix at

separating interface. (a) Initial debonding stage, with pro-

gression of shear crack up the grain-matrix walls to 2y =2Y

at separation 2u. (b) Subsequent sliding pullout to disen-

gagement at 2u = 2u,. Long grain dimension L is limiting
value that 2Y or 2u. may attain.

(b) Pullout
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matrix on both sides of the interface. This is the first
stage of bridge formation. The ensuing build-up of
differential strain between the grain and matrix re-
sults in interfacial debonding, starting at the crack
plane and extending stably up the interface. Simulta-
neous with this debonding is the onset of resistive,
frictional tractions, increasing in intensity until
debonding is effectively complete.

Calculations of the debonding process have been
carried out in the ceramic composites literature,
particularly in the context of fibre-reinforced com-
posites. We resort to one such calculation, by
Marshall and Evans [17], deferring details to the
Appendix. At the outset we may assert that the
debonding is unlikely to make a profound contribu-
tion to the energy dissipation; although frictional
forces are involved, the distances over which these
forces are active is limited to the relatively small
elastic displacements within the internally stressed
bridges. Balancing the integrated frictional shear lag
stress over the debonded interface area against the
axial stress in the residually stressed bridging grain,
one obtains a square root dependence of closure
stress p on u [17] (Appendix)

p(u) = {Quog EA/I)'P/Q2d* /P = D}u'? — ox (3)

where 4 is the circumferential distance around the
debonding grain at the separating interface (e.g.
A = 4l for the rectangular geometry in Fig. 1) and p
is the friction coefficient. We note the appearance of
E in equation (3), consistent with an elastic relaxation
process. We note also the negative intercept,
p(0) = —oy, indicative of the opening stress that
pertains at initial wall separation.

2.3. Sliding friction grain pullout

Once debonded, the grain can slide out of the
matrix, Fig. 2(b). The frictional closure stress on the
crack wall is now exerted by individual bridging
grains as they are pulled out of the embedding matrix.
The force exerted by one grain at any wall-wall
separation 2u is given by the product of: A(2u. — 2u),
with 2u. the separation at which the grain disengages
(area of grain wall in contact with matrix); u (sliding
friction coefficient); and —o (normal, clamping
stress). Noting that the average area occupied by one
bridge is 242 and recalling equations (1) and (2), we
obtain

p) = (pogdue [d) Qd*[1* = )(1 —ufu).  (4)

This relation has the same characteristic falloff
with u as assumed empirically in earlier studies [8, 9],
except that here it is explicitly linear. Such a linear
dependence is contingent on an invariant cross-
sectional grain geometry during pullout [18], as im-
plicit in our consideration of a rectangular mi-
crostructure in Fig. 2. The representation in Fig. 2
also depicts the frictional forces as distributed uni-
formly and symmetrically over the entire ma-
trix/bridging-grain remnant ‘contact” interface.
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Direct observations of the bridging configurations
indicate that the reality is more complex: the bridging
configuration is, in general, far from rectangular, and
the frictional contact regions tend to be concentrated
at points of geometrical irregularity (ledges, re-en-
trant corners, etc.), often across a single (compres-
sively stressed) facet of the disengaging grain, where
the resistance forces can be intense (see, for instance,
Fig. 12 of Ref. [7]). Ours is a somewhat idealised
representation of the closure stress function. Never-
theless, equation (4) does contain the essential physics
of the proposed separation process, and is well
structured for incorporation of critical microstruc-
tural parameters.

In deriving equation (4) we have not considered the
possibility that the bridging grains might rupture
transgranularly. If such rupture were to occur, p(u)
would cut off prematurely at some critical separation.
Such cutoffs are indeed predicted in ceramic com-
posites with continuous fibres [17]. They might be
expected in our monophase ceramics if the frictional
stresses were allowed to build up sufficiently, e.g. at
large grain sizes. For the present we neglect this
possibility.

Because sliding friction can occur over a large
fraction of the embedded grain dimension, we may
anticipate pullout to dominate debonding as a con-
tributory factor in the toughening.

2.4. Composite p(u) function

Now let us combine the results in Sections 2.3 and
2.4 to obtain a composite closure stress—separation
function p(u) for the entire evolution of the bridge,
from initial formation to rupture and beyond. It is
re-emphasised that we are dealing with an approxi-
mation in which a discrete distribution of bridging
forces is replaced by a continuous stress function. We
recall that this approximation is good only for cracks
with area large compared to the area occupied by a
single bridge (¢ > d). As alluded in Section 2.1, we
shall extend the formalism down to the intermediate
crack-size domain, but not to the small-crack domain
(¢ <d) where the internal stresses dominate.

Notwithstanding these provisos, we reduce the
closure stress function as follows

p)=pp(u/u)?—ox O<u<u,) (52
p@)=pu(1 —ufu) (u, <u<u) (5b)
pw)=0 (u=u) (5¢)

where the scaling quantities
Pp = (2pog EAu.I?)'?/(2d*|I* — 1) (6a)
Pw = (uog Au.[d?) (2d*/I* — 1) (6b)

are respectively the shear-lag stress in equation (3)
evaluated at u = u. in the absence of residual stress oy
and the sliding friction stress in equation (4) evalu-
ated at u = 0. Equation (5) is plotted schematically in
Fig. 3. Thus we have a function p(x) with negative
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Fig. 3. Schematic plot of p(u) closure function, equation (5).
Area under the composite solid curve is a measure of the
energy absorbed by the debonding-pullout bridging process.

intercept at p(0) = —oy, square root dependence to
the crossover point at u =u ., and linear decline to
p(us) =0. The area under the curve in Fig. 3 repre-
sents the energy of separation of the bridged inter-
face.

It is instructive to determine the crossover point
where the p(u) functions in equations 5(a) and (b) are
identically equal

Uy fue=(pp/2pu)
x {[1 + 4py(py + 0r)/p1" = 132 (1)

As indicated above, we may generally expect to find
Pp > pm+ 0gr, Uy [ue~[(py + G'R)/PD]2 <1, in which
event the debonding term will be relatively insignifi-
cant in the fracture mechanics. We shall find this to
be the case for our alumina later (Section 4).

3. FRACTURE MECHANICS

3.1. General equilibrium requirements

Begin by defining a general stress intensity factor
condition for the equilibrium of a crack subject to an
applied tensile loading field (K,), a flaw-localised
internal tensile field associated with any residual
nucleation forces on the crack (K,) [19], and a
microstructure-associated closure field (K,) [8]. These
stress intensity fields are linearly superposable. A
stationary value obtains when the net K on the crack
tip, K.(c) say, just balances the toughness associated
with reversible creation of surfaces, T,

K(c)=K,(c)+ K. (c)+ K,(c)
=T, = (29, E)" ®
with E’ = E/(1 —v?) for plane strain, v Poisson’s
ratio. Here y, is an appropriate surface energy term.

For the case of special interest to us, that of inter-
granular fracture, we have

2y0=2y,— 78 &)

with v, the surface energy of the bulk solid and 7y the
grain boundary formation energy.



2664

It is convenient to restate the above equilibrium
requirement in a form appropriate to the R-curve
phenomenology. We note that, like K,, K, is a truly
extrinsic mechanical driving force on the crack sys-
tem. (We shall identify K, specifically for identation
cracks below.) The quantity K, on the other hand is
an intrinsic resistive term, always negative, so is more
appropriately regarded as part of the toughness, i.e.
T,= —K,. Accordingly

KA(C) = Ka(c) + Kr(c)
=T, +T,(c) = T(c). (10)

The composite, crack-size dependent toughness term
T is equivalent to the quantity Ky used by some: we
adopt the T notation to avoid potential confusion
with the negative sign in K,, and to emphasise that
we are considering an intrinsic material property
rather than an extrinsic mechanical force. We may
note the equivalence of the above stress intensity
factor relation K, = K, = T with the mechanical re-
lease rate relation G, = R, via the familiar connection
T =(RE’)"? [13]; hence our use of the term “T-
curve” instead of the more familiar “R-curve”.

The critical condition for the crack equilibrium to
be unstable is then given by dK.(c)/dc > dT,/dc =0
in equation (8) or, alternatively, by dK,(c)/dc
> dT(c)/dc in equation (10) [3]. The latter defines the
familiar “tangency” condition for materials with
T-curves.

3.2. Microstructural stress intensity factor

Consider the idealised penny crack system in
Fig. 4. As discussed in Section 2.1 we suppose that the
crack originates within the matrix (i.e. in a region
between bridges) subject to the (conservative) tensile
stress oy, and subsequently spreads into the sur-
rounding regions defined by the (nonconservative)
closure stress function p(x). We shall designate con-
tributions to the microstructural toughness term 7,
from the oy component by single prime notation, and

(b)

%, %

Fig. 4. Growth of penny-like crack in bridging field; (a) side
view, (b) projection view. Crack experiences only matrix
tensile stresses up to first intersection with bridges at ¢ =d.
Thereafter, internal stresses rapidly average out to zero
across crack plane, and frictional closure forces dominate.
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from the p(u) component by double prime, i.e.
T,=T,+ T,. It is convenient to separate the prob-
lem into three crack-size regions: ¢ smaller than d
(corresponding to first bridge intersections at one half
of the spacing 2d in Fig. 1); ¢ larger than d but smaller
than the critical size c. at which the first-intersected
bridges just rupture; ¢ larger than c. (such that the
entire bridging zone translates with the advancing
tip). As we shall see below (Section 3.2.2), a further
subdivision of the second of these regions may be
made.

3.2.1. Precursor tensile zone, ¢ <d. Within this
region the crack experiences only the matrix tensile
stress og. The negative of the stress intensity factor
for this region, T, = — K, is of the familiar form for
uniform stress fields

T, (c)= —yogrc'? (c <d) (11)

where i is a geometry-dependent coefficient appro-
priate to penny-like cracks. In this region the contri-
bution from p(u) is, of course, zero, i.e.

TI()=0 (c<d). (12)

3.2.2. Bridging zone, d < ¢ < ¢.. Within the bridg-
ing zone the crack experiences two contributions, one
due to the persistent tensile stresses gy over the radial
distance r < d and the other to the frictional closure
stresses p(u) over r > d. These microstructural contri-
butions will continue to evolve with crack extension
as long as the first-intersected bridge at r = d remains
intact.

Start with the first of these contributions,
T,= —K,. We use the Green’s function solution for
penny-like cracks subject to radially distributed
stresses o(r) =gy over 0 <r <d, o(r)=0overr >d

(201

T,(c)

=@ /c'®) Jd"f(r)dr/(c’z—rz)”2
0

—yoge?[1 — (1 — d%/c?)"]
@d<c<ec). (13)

The following limits are of interest: at ¢ =d,
T, = —yogrd'?, as required to match equation (11);
atc > d, T, > —yord*/2c*?, which is the solution for
a central point-force opening configuration. It is
apparent that the influence of the persistent matrix
stress diminishes rapidly once the crack enters this
bridging zone.

Now consider the second contribution, T}, = — K.
In its exact form, this contribution is expressible as a
nonlinear integral equation, which has no general
closed-form solution [21]. To avoid a detailed numer-
ical analysis we compute this term analytically in the
approximation of “weak shielding” [9, 17], where the
influence of the closure stresses is taken into account
in the stress intensity factor balance but is ignored in
the crack-opening displacement relation. The as-
sumption of weak shielding is appropriate for ceram-
ics with modest toughening characteristics, i.e.
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ceramics for which T}, < T,; for our model material
this condition is satisfied in the crucial small-crack
region (see Section 4, Fig. 7). In this approximation
we have [9, 17]
z
Tu(u)=+(E'|T,) J p(u)du (14)
0
where u; is the crack-opening displacement at the
stationary edge of the closure zone, Z in Fig. 5.
The integral in equation (14) is most conveniently
taken in two parts, according to whether the crack-
opening displacement u is less or greater than u_ in
Fig. 3. For the first region we insert p(x) from
equation 5(a)

Tu(u) = +(E'|T;) J"z [po(u/u.)'”? — og] du
0

= —(E’|Ty)oruz[1 — (2pp/30%)
X (tz fu)'? O<uz<u,). (15a)

For the second region we insert p(u) from equations
5(a) and (b)

T,(u)=+(E'|Ty) {ju [po(u/u)? — og] du
0

+ Juz [P (1 — u/us)] du}

ut

= (E'|Ty){ —ogu,[1 — (2pp/30r) (u,/u)"?]
+ puuaf(uz — u)u]
X A1 — [(ug + uy)2ul}}

U, <uz<u).

(15b)

To transform T,(u) to T,(c) we must determine the
zone-edge displacement u, = u;(c) from an appropri-
ate relation for the crack profile. In the spirit of the
weak-shielding approximation we use Sneddon’s so-
lution for the near-field profile u(r, ¢) of a crack free
of microstructural closure terms, but with these
same terms included implicitly in the equilibrium
requirement [K. = T, in equation (8)] [8, 9]

u(r,c)=@WT,/E'c")(ct—r)'2 (16)

Then the requisite crack-opening displacement
u = uy; = u(d, c) = u(c) at the zone boundary r =d is

uz(c)=WT,/E'c'"™)(c*—d)? (d<c<ec). (17)

Fig. 5. Coordinate system for crack-interface bridging. C
denotes crack tip, Z the edge of the bridging zone at ¢ = d.
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At the debonding/pullout crossover point u,(d, c.)
=u,(c)=u, and critical pullout point u,(d, c.)
= u.(c) = u., equation (17) reduces to

u, =WT,/E'c) (i —dY)'"” (18a)
= YTy} E" (co>d) (18b)

respectively, where ¢, and c. define the corresponding
crack sizes.

3.2.3. Steady-state zone, ¢ = c.. Once the critical
first-intersected bridge at Z (Fig. 5) is ruptured the
entire bridging zone translates with the advancing
crack tip. In the limit ¢. > d, equation (13) becomes

T, =0. (19)

For u.» u,, ¢» » c,, evaluation of equation (15b) at
u; = u. similarly gives

T,~ +Epyu2T, (uz=u). (20)

3.3. T-curve

We now have all the ingredients for constructing
the T-curve. At this stage it is convenient to introduce
some coeflicients that characterise the geometrical
features of the microstructure in relation to the grain
size, [ (Fig. 1). This introduces the concept of geomet-
rical similitude: for microstructures that change only
in scale and not in the essential geometry such
coefficients remain invariant. Thus we define the
following similitude constants

ay=dJl (2la)
o0, =L/l (21b)
ay = A/l (21¢)
€, =2u./L. (21d)

The coefficient «, relates the bridge spacing to
the grain size (unity for equiaxed microstructures,
Section 2.1), and generally defines the area fraction of
bridges (1/202); a;, is the aspect ratio of the pullout
grains, with L the long (embedded) dimension (again,
unity for equiaxed microstructures); «, is the cross-
sectional perimeter to grain-diameter ratio for the
embedded grain (4 for grains of rectangular cross
section); and ¢, is the “bridge rupture strain”. Then
we may substitute into equations (7) and (11-20) to
determine T(c) = Ty + T,(c)+ T, (c) in the follow-
ing crack-size regions

T(c)=T,—yogc? (c <ayl) (22a)
T(c) =T, — yorc'*{1 — (2pp/30r)(c/c:)"*
x (1 —allPfe) (ol <c<ey) (22b)

T(e) = Ty — Yowe {1 — (1 — a3lcH'”
+ (c./e)' (1= a3/e3) Pl — (2pp/307)
X (e /e (1 = o31c2) ]}
+ PP {1 — a3 — (e fo)?
x (1= a3le3)"?} {1 (/e
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x (1 —ajl?c?)' P + (e fen)”
x (1 — a2} ci) P} (e, <c<ce)
T(c)=T,+ %‘//PMCV2 =T,
with

(22¢)
(c=zcr) (22d)
Po = (e 0 pog E) /05— 1) (232)
(23b)
(23¢)

pw =€ 0 pog(1 —1/2a})

o~ (e o, E'L2YT,)

(¢} —aiDe 17 = (eLa, E'1/24Ty)
X (Pp/2pm)* {[1 + 4py
x (pm+ 0r)/pp]? — 1} (23d)

the last (implicit) equation defining ¢, . Note it is only
the spatial scaling terms ¢. and ¢, and not the stress
scaling terms p, and p,,, that depend on /. Evaluation
of equation (22) indicates that T'(¢) drops below T, in
its initial extension within ¢ < d, but quickly increases
above T, once the bridging zone is entered and the
crack extends beyond c,, ultimately saturating at its
steady state value for ¢ > ¢.. We shall illustrate this
general trend for our model alumina material in
Section 4 below.

3.4. Strength characteristics for indentation flaws

Consider finally the conditions for Vickers half-
penny indentation cracks produced at load P to
proceed to unlimited failure under the action of an
applied tensile stress g,. From those conditions we
may compute the inert strength o, (i.e. the strength in
the absence of any kinetic effects) as a function of P,
and thence establish the basis for deconvolution of
the T-curve from experimental data.

Begin by writing K,(c) in equation (10) in the
familiar form for such cracks

Ka(c)=yo,c'? +yP/c* 24

where yx is a coefficient denoting the intensity of the
residual Vickers elastic—plastic contact deformation
field [22-24]. At equilibrium, K, (c) = T(c), we have

a,(c) = (1/ye'®)[T(c) — xP/c*]. 25)

We now seek an instability condition for o,(c).
Recall from Section 3.1 that the requirement for
instability is dK, (¢)/dc = dT(c)/dc. In terms of equa-
tion (25) this condition is equivalent to do,(c)/dc =0
[13]. In general (as we shall demonstrate in Section 4),
0,(c) has two maxima, one on either side of ¢ =d:
that at ¢ < d is governed by the shorter-range influ-
ence of the residual contact field (K,); that at ¢ > d is
governed by the longer-range influence of the mi-
crostructural interaction (K, = —T,) [9]. The relative
heights of the two barriers is determined by the
indentation load. Once the first barrier (at ¢ < d) is

tVistal grade AlLO,,
Colorado.

Coors Ceramics Co., Golden,
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surmounted the crack becomes unstable. However,
the crack propagates spontaneously to failure only if
the second barrier (at ¢ > d) is lower. If the second
barrier is higher the crack will arrest on a stable
branch of the o¢,(c) curve (“pop in”) before an
unlimited instability can be achieved. Thus the
strength o, is determined by the greater of the two
maxima.

It remains to demonstrate how one may solve
equation (25) numerically for the strength character-
istic, and thence extract the T'(¢) curve, for a given
material system.

4. CASE STUDY ON AN ALUMINA CERAMIC

We demonstrate the above fracture mechanics
formalism by analysing indentation-strength, o, (P),
data for a particular polycrystalline alumina
ceramic.t This alumina, apart from exhibiting signifi-
cant T-curve characteristics, has served as a model
material in previous studies of the bridging mech-
anism [3,4,7]. It is a nominally pure material with
grain size / & 20 ym. In actuality, the material con-
tains a small amount of sintering aid (<0.1% MgO
and other oxide additive) and has a noticeably
nonuniform, nonequiaxed grain distribution (e.g. see
micrographs in Ref. [7]), but we shall regard these
as mere “perturbations” of an otherwise regular
microstructure.

The analytical procedure involves selecting the
parameters in equations (21), (22) and (25) to get an
iterative best fit to the ¢, (P) data. It is similar in
principle to the procedure described in an earlier
study [9], but with some refinements.

4.1. Fitting procedure

The first step is to specify initial values for the
T-curve parameters:

(i) Material parameters. First we specify Young'’s
modulus E and Vickers hardness H for our alumina.
The values E = 393 GPa (Poisson’s ratio v = 0.20)
and hardness H = 19.1 GPa are taken from earlier
data [9]. These values are sufficiently accurate
(< £ 1% uncertainty) as to be treated as invariants
in the iteration process.

The intrinsic grain boundary toughness T, and
internal stress 6z can not be specified to the same
degree of accuracy (probably not much better than
+30%). For T, we write Ty/Ts = (1 — y5/2y5)"? from
equations (8) and (9), with Tg= 3.1 MPa-m!? the
toughness of single crystal sapphire [9]: using a most
recent estimate yg/ys = 1.05 (median) from dihedral
angle measurements of thermal grooves at grain-
boundary/free-surface junctions in MgO-doped alu-
mina polycrystals [25], we obtain T, = 2.1 MPa-m'?
however, an earlier estimate yg/ys = 0.54 in bicrystals
[26] suggests that the true value of T, could be
somewhat larger. For oy we take a value 100 MPa
(mean) from measurements of the broadening of
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spectroscopic lines [27]. In view of the abovemen-
tioned uncertainty level, T, and o, are regarded as
subject to minor adjustment.

(it) Bridging parameters. The bridge rupture strain
¢, and the sliding friction coefficient u are even more
difficult to specify a priori. An esimate of ¢, may be
obtained directly from microscopic measurements of
crack-opening displacements. For our alumina grain
size | = 20 pm, displacements u. = 1-2 ym have been
observed at active bridging sites some millimeters
behind the crack tip, corresponding to ¢; ~ 0.05-0.10
(e.g from micrographs in Ref. [7]). Reichl and
Steinbrech [28], in a more detailed study of several
“pure” aluminas in the grain size range 3-17 um,
found ¢; ~0.12. This parameter probably depends
strongly on the detailed grain geometry, so again we
regard it as an adjustable, with ¢, ~0.10 as our
starting value.

As with any dissipative quantity, the friction co-
efficient u is notoriously difficult to predetermine for
any given material system. We have already alluded
to the existence of geometrical irregularities that
might augment p in the grain pullout configuration
(Section 2.3), suggesting that we should not be sur-
prised to find unusually large values. A starting
estimate of this parameter is accordingly obtained by
trial and error using the algorithm described below
(Section 4.2) in preliminary data-fit runs.

(iii) Flaw parameters. Next, we specify the par-
ameters that characterise the Vickers indentation
flaws. We use “calibrated” values from previous
indentation studies [9]: the geometrical constant
¥ = 1.24 (close to value 1.27 for ideal penny cracks),
and the residual-contact-intensity  coefficient
¥ =4.0 x 107% (E/H)"2. These are taken as invari-
ants.

(iv) Similitude parameters. Lastly, we specify the «
similitude parameters in equation (21). We take
a,=1=0a, and «, =4, corresponding to an ideally
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Fig. 6. Plot of ¢, (P) for selected alumina material of grain
size / = 20 pm. Points with standard deviation error bars are
experimental data from reference {3]. Solid curve is best fit
of bridging theory to these points. Dashed curve at extreme
left is corresponding hypothetical curve for same material
with matrix tensile stresses present but with no bridging
tractions (T = T, — T,); central dashed curve corresponds
to same material but with no bridging or internal stresses
(T=T,).
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Fig. 7. Deconvoluted toughness 7(c) function, equation
(22), for selected alumina, corresponding to data fit in
Fig. 6. The falloff in the function below T prior to first
bridge intersection at ¢ =d is indicative of the initially
deleterious effect of (tensile) matrix internal stresses. There-
after the crack becomes dominated by the beneficial influ-
ence of frictional grain pullout tractions, whence the curve
rises above T, again to its saturation value T, at ¢ =c..

equiaxed and rectangular microstructure. We regard
o, and «, as invariants, noting from equation (23)
that errors in these terms can be largely accommo-
dated in the adjustments of ¢, and u. The bridge
spacing parameter a; we allow to vary.

We then use the following regression algorithm for
best-fitting the o,,(P) data:

(i) After evaluating the scaling stress (pp, py) and
spatial (c., c¢,) terms in equation (23) using the
starting parameters from Section 4.1, compute a trial
T-curve from equation (22).

(ii) Compute the function g, (c) in equation (25) for
each indentation load P for which experimental data
are available. Determine the strength ¢, as the max-
imum in this function at each of these loads (recalling
that if two maxima exist it is the greater which
determines o).

(iii) Compare computed strengths with measured
values, and thence evaluate the residual,

Z [Jm(P)calc - am(P)meas]z/(n - 1)’

over all n loads.

(iv) Increment the adjustables ¢, and p in a
“coarse” first-run matrix search routine (in steps 10%
of starting values), and cycle (i)—(iii). Invoke a mini-
mum variance condition to determine interim best-fit
values.

(v) Increment the adjustables ¢, p, T,, o and o,
in a “fine”, second-run routine (ultimately, in steps of
1% of starting value), and proceed similarly to
determine final best-fit values.

4.2. Results

The results of the data analysis for our model
alumina are summarised in Figs 6-8, corresponding
to final best-fit values ¢, =0.135, u=1.80,
T,=2.50 MPa-m'?, op=155MPa and a,=1.50.
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Fig. 8. Plots of o,(c), equation (25), for selected alumina,

using the parametric determinations from Figs 6 and 7.

Curves are for indentation loads P covering the data range

in Fig. 6: (a) 0.2 N; (b) 1 N; (c) 2 N; (d) 10 N; (e) 100 N; (f)
1000 N.

We note that ¢, corresponds to the Reichl and
Steinbrech value quoted above; that u is substantial,
as foreshadowed in Section 2.3; that the values of T,
and oy are not substantially different from the first,
trial estimates; and that «, corresponds to a bridge at
every third grain. In Fig. 6 the solid curve represents
the fit to the experimental o, (P) data points (error
bars on the data points representing standard devia-
tions) [3]. The theory accounts for the major trends
in the data, in particular the tendency to a plateau
strength at diminishing indentation loads (shorter
initial crack lengths).

Also plotted in Fig. 6, as the two dashed curves at
left, are the predicted responses for the same alumina
corresponding to the following hypothetical “tough-
ness states’: frictional stresses “switched off”, i.e.
bridges removed (pp =0=py, d = 0), but matrix
internal stresses ever present (gg #0), T =T, — T};
frictional and internal stresses switched off
(pp=0=py, d=0o0, og=0), T=T,. These two
curves quantify the degrading effect of the internal
stress on the strength at low indentation loads (small
flaw sizes); and, conversely, the (over-) compensating
effect of the friction at high loads (large flaw sizes),
leading ultimately to the macroscopic toughness state
T=T,.

The deconvoluted T-curve corresponding to the
data fit is shown in Fig. 7. The previously mentioned
tendency for T'(c) to drop below T, prior to intersect-
ing the first bridges at ¢ = d (section 3.3) is apparent
in this diagram. This is a facet of T-curve behaviour
that escapes detection in traditional, large-scale crack
tests, where the initial stages of crack propagation
generally occur from ill-defined, rounded notches.
The fall-off in T'(c) continues in the immediate after-
math of the first bridge intersection as the crack
enters the debonding zone d < ¢ <c,, although in

tAD999 grade (3 um), and heat-treated Vistal grade
(25 pm). Coors Ceramics Co., Golden, Colorado.
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our material this region is so small (c,/d < 1.01) as
to be undetectable in Fig. 7. Once the crack enters the
frictional sliding zone ¢, < ¢ < c. the T-curve rises
rapidly until, at ¢ >c., it begins its familiar rise
toward saturation at T = T,,. This plot shows again
that the internal stress is an important factor in the
toughness characteristic; but that in the frictional
contribution it is only the pullout, and not the
debonding, that is important.

Figure 8 shows plots of applied stress vs crack size
for our alumina at different indentation loads. These
plots illustrate the instabilities that occur in the crack
evolution to failure. At large P it is the second
maximum, i.e. the maximum associated with the
bridging, that dominates [9]. Within the plateau
strength region of Fig. 6 the initial crack “pops in”
before growing stably to failure, consistent with
observation [7]. The stabilising effect of the bridging
is evident in this region as the relative insensitivity of
the second maximum to P. At very small P it is the
first maximum, associated with the residual contact
field, that dominates. In principle, indentations in this
region should allow us to explore the extreme left-
hand branch of the o,(P) plot in Fig. 6, but the
almost invariable presence of natural flaws in the size
range ¢ >d generally precludes the possibility of
exceeding the plateau strength level [3, 9].

5. GRAIN-SIZE DEPENDENCE
OF STRENGTH

Let us demonstrate the versatility of the ‘‘cali-
brated” formulation above by considering the grain-
size dependence of the T-curve, T(c), and thence the
indentation—strength function, o,,(P), for alumina
ceramics. There are few systematic experimental stud-
ies of such grain-size dependencies in alumina (or,
indeed, in any other polycrystalline ceramic material)
in the literature. However, there are some earlier
indentation—strength data for two aluminas, nomi-
nally pure with grain sizes 3 and 25 ym, that we may
usefully compare with the results for our reference
material in Section 4 [3].f Also, there are some
unpublished bend-strength data by Charles and
Shaw [29] on as-fired “pure” aluminas with grain
sizes in the range 6-150 um that allow a tentative
investigation of the underlying o,(/) relation for
“natural” flaws.

Consider first the indentation—strength data [3] for
the 3 and 25 um aluminas in Fig. 9. We make our
comparison by generating the appropriate o, (P)
functions using precisely the same best-fit parameters
as obtained in Section 4, but with / appropriately
adjusted. These functions are plotted as the solid
curves in Fig. 9, along with their counterpart for
[ =20 um (dashed line) from Fig. 6. The calibrated
theory therefore has the capacity to predict at least
qualitative trends in strength and toughness charac-
teristics with change in the important microstructural
parameters.
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Fig. 9. Plots of ¢,,(P) for alumina materials of grain size
| =3 and 25 um. Points with standard deviation error bars
are experimental data from Ref. [3]. Solid curves are predic-
tions of bridging theory appropriate to these grain sizes,
using best-fit parameters from the reference alumina
material (/ =20 um) from Fig. 6. [Reference o,,(P) curve
included here as dashed curve for comparison.]

The informational value of comparative predic-
tions of the type illustrated in Fig. 9 is manifest in the
way the curves cross each other. It becomes clear that
there can be no simple, single grain-size dependence
of strength for materials with strong T-curves (R-
curves). In particular, the familiar /=2 (Hall-Petch)
dependence does not appear to be obeyed in any
crack-size region. Thus, whereas the plateau g, tends
to diminish with increasing / at low loads (small c),
the dependence on / is somewhat less strong than
[~'2, At high loads (large c¢), o,, actually increases
with /.

Now consider how the theory compares with the
available o, (/) data [29] for failures from “natural”
flaws, Fig. 10. The solid line appropriately represents
the predicted dependence of plateau strength for
flaws without any residual nucleation field (i.e.
K. = 0), once more using the best-fit parameters from
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Fig. 10. Strength vs grain size for polycrystalline alumina.
Data points from Ref. [29], means and standard deviations
of insert bend strengths for specimens with “natural” flaws
(as-fired “Lucalox®” specimens). Solid line from bridging
theory, predicted plateau strengths for natural flaws, using
best-fit parameters from the reference alumina material.
(Arrow on data point at / = 66 um indicates a material with
exceptionally broad grain size distribution [29].)

2669

the reference alumina material and treating / as an
independent variable. We may note that the slope of
this line is close to 1/3; and that a force-fitted line with
the classical Hall-Petch slope 1/2 cannot be made to
pass through the error bars on the data points.

6. DISCUSSION

Our toughness/crack-size (T-curve, or R-curve)
model is based on a physical microstructural consti-
tutive relation for crack interfacial bridging, in which
thermal expansion mismatch stresses are a governing
factor in determining dissipative Coulomb frictional
pullout tractions at interlocking grains. The model
accounts for the major features of the T-curve func-
tion, notably the magnitude and range, for nontrans-
forming ceramics. We emphasise, however, that our
T(c) functions have had to be best-fitted to the
experimental (indentation-strength) data, with ad-
justable parameters. In addition, the formulation
embodies several approximations, e.g. weak-shield-
ing, undistorted Sneddon crack profile, negligible
transgranular fracture. Furthermore, we have given
explicit consideration here to just one ceramic
material, alumina. Accordingly, any “goodness of fit”
evident in the analysis of Sections 4 and 5 is not to
be construed as proving the general validity of the
bridging model. Such proof comes from independent,
in situ observation of crack micromechanics on this
alumina [7] as well as on a wide range of other
nontransforming ceramics [10], not from conven-
tional macroscopic fracture mechanics measure-
ments. However, the fit does confirm that the
bridging model can account for most documented
characteristics of T-curve (R-curve) behaviour, e.g. the
flaw tolerance quality and grain-size dependencies.

Moreover, once the T(c) function has been
“calibrated” against a ‘“‘reference” data set, as in
Section 3, we have the power to predict how the
T-curve and associated o,,(P) functions should vary
with changes in the microstructure. We alluded to
this power in our brief consideration of the
strength/grain-size dependence for alumina ceramics
in Section 4. A more detailed study of the o, (/)
dependence in aluminas is currently under way [30].
Similar dependencies of strength on grain boundary
toughness (Ty), internal stress level (), grain—grain
friction coefficient (u), may be similarly evaluated.
These are additional factors that might be systemat-
ically adjusted by material processors to improve
strength characteristics. Thus we have a physically
sound basis for optimising the microstructures of the
broad range of structural ceramic materials whose
toughness behaviour is governed by the bridging
mechanism.

The a priori specification of a constitutive stress-
separation law is manifestly the single most impor-
tant factor that distinguishes the present analysis
from previous treatments [8, 9]. The inclusion of the
internal stress parameter oy is an especially unique
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feature. Its strong influence on the mechanical re-
sponse is apparent in Figs 6 and 7: in Fig. 6 as the
comparison between solid o,,(P) curve (data fit for
fully bridged crack) and central dashed curve (zero
internal stress, zero bridging), indicative of a counter-
vailing lowering and raising of the strength at small
and large crack sizes respectively; in Fig. 7 corre-
spondingly as the initially falling (¢ <d) but ulti-
mately rising 7(c) curve (¢ > d). We see that the
influence of gy can be deleterious at small ¢, but that
this deleterious influence may be more than compen-
sated, via the dissipative frictional sliding interaction,
at large ¢. The route to flaw tolerance is therefore a
delicate one of balancing positive and negative ele-
ments of inbuilt stress states at opposite ends of the
flaw-size spectrum.

It is useful to pursue the issue of short cracks vs
long cracks in the context of traditional fracture
mechanics testing. Some recent experimental results
reported by Steinbrech and Schmenkel [12] on a
nominally pure alumina of grain size / =13 ym are
especially well suited for this purpose. Those authors
measured crack growth from single-edge-notched
beam specimens to obtain T'(c) data on the macro-
scopic scale, and from naturally occurring flaws in
four-point-bend specimens to obtain comparative
data on the microscopic scale. Their results are
plotted in Fig. 11, together with the theoretically
predicted curve for the appropriate grain size from
our “calibrated” equation (22). The theoretical curve
appears at least to reflect the broader trends of the
rising T(c) curve at large ¢, although we can hardly
expect any such extrapolation of the indentation-
strength-calibrated curve to provide an accurate rep-
resentation in this long-crack domain. Conversely, it
is evident that there are important features of the
T(c) function at small ¢ which may not be readily
quantified by experimentation with long-crack speci-
mens. In particular, the fall-off in T(c) at ¢ <d
associated with internal tensile matrix stresses will
generally pass unnoticed in such specimens. This is
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Fig. 11. Comparison of T(c) data obtained by Steinbrech &
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of grain size / = 13 um using surface cracks (SC) in four-

point bend and single-edge-notched-beam (SENB) and

specimens with small-scale flaws with theoretically-predicted
curve from present analysis.
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the domain of short cracks, where microstructure-
scale instabilities in the initial growth (e.g. the initial
“pop-in” referred to in Section 4) can occur.

If this last point concerning short-crack instabili-
ties is not readily apparent in conventional crack-
growth tests, it certainly is manifest in one
well-documented aspect of the fracture behaviour of
ceramics. This is the tendency of those ceramics with
large internal stresses to exhibit spontaneous micro-
fracture at some critical grain size. Let us note that
the shape of the diminishing T'(c) curve in Fig. 7 prior
to the first bridge intersection at ¢ = 4 is independent
of grain size / [equation (22a)]. The effect of increas-
ing d will thus be to extend this portion of the T'(c)
curve further downward. If we were to scale up /such
that T(c) were to intersect the c-axis before the
condition ¢ =d is satisfied, then pre-existing flaws
would become amenable to unstable extension with-
out any external load applied. Hence the phenom-
enon of spontaneous microfracture may be seen as a
natural, limiting consequence of our model.

The implications of the bridging mechanics pre-
sented here extend beyond the immediate question of
inert strength, to fatigue and lifetime analysis [31] and
to wear properties of brittle ceramics [32].
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APPENDIX

Calculation of Frictional Debonding Stress—Separation
Function

In this Appendix we reproduce the essence of a calculation
by Marshall and Evans [17] for frictional debonding. We
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assume that debonding begins at the crack plane and works
itself up the matrix—grain interface a distance Y as the crack
walls separate through displacement u, Fig. 2. At first, we
suppose only that shear-lag tractions 7(y) do exist, and only
later connect these tractions with internal stresses.

Consider an elemental area of matrix—grain interface
bounded by y and y +dy. At equilibrium, the frictional
traction t over this area must be balanced by the axial
internal stress o(y) in the embedded grain, i.e. /> do(y) =
—tAdy, or

do/dy = —1i/I%. (A1)

This equation may be integrated at constant t (neglecting
any elastic stresses at y > Y), over y =0 to y = Y. We take
as boundary conditions ¢ (0) = p,(/?/2d?) [recall from equa-
tion (2) that /2/24% is area fraction of bridges] and ¢ (Y) = p,,
where p, is the stress exerted by the embedded grain in the
absence of any residual stresses. The integration gives

po=(TAY[I))Qd*/I* - 1). (A2)

The strain in the grain (measured relative to the strain
endured if sliding were to be prevented [17]) at the debond
length Y is

ulY =Y(p,/E)Qd*I> — 1) (A3)

where the factor two is because the strain has a linear
gradient along y. Eliminating Y from equations (A2) and
(A3) gives

Po(u) = 2TEAu/I®'2/(2d*/1* — 1). (A4)

Now suppose that the friction is Coulombic, i.e. due to
residual internal stresses. Then we may write immediately,
T = puog. In addition, we must replace p, by p,+ oy, to
allow for the residual opening force exerted by the embed-
ded grain on the matrix at zero crack-wall displacement [17].
With equation (2), these modifications lead to our final
constitutive relation for debonding

p) =[Quog EA[I)?]d*I* — D]u'? — og

as per equation (3) in the text.

(A3)



